A videó megfigyelő rendszerekben alkalmazott kamerák és a monitorok kifejlesztése során a konstruktőrök mindig figyelembe vették az emberi szem és a látás fiziológiai sajátosságait, működési elvét, ezért mi is fontosnak tartjuk, hogy ismertessük ennek a rendkívül kifinomult és összetett érzékszervünknek a jellemzőit.
Köztudott, hogy az ember az őt körülvevő világot öt érzékszerve segítségével fogja fel. Összes érzékszervünk közül a szem tekinthető a legfontosabbnak, hiszen egy egészséges ember a külvilágból származó információk mintegy 60-80 százalékát látása révén juttatja el az agyához. Ez a legdifferenciáltabb, a legnagyobb hatótávolságú, a leggyorsabb adatátvitelt biztosító és a legnagyobb alkalmazkodóképességgel rendelkező érzékszervünk. Fontosságát tovább növeli, hogy az emberi agy 40%-a a látással foglalkozik. A világot elsősorban látásunkon keresztül értjük meg. Érdekes, hogy a világon használt nyelvek ugyan rendkívül sokszínűek és egymástól eltérőek, de közös bennük, hogy mindegyik nagyon képszerű. Ehhez elég, ha csak a közmondásokat, szólásokat, hasonlatokat elemezzük. Az evolúció során érzékszerveink közül a látás alakult ki legkésőbb.
A fény és a látás
A fény elektromágneses sugárzás, amelynek hullámhossza a kb. 380 nm és 780 nm közötti tartományban helyezkedik el. Ez a tartomány az elektromágneses sugárzási spektrumnak csak töredékét jelenti az infravörös és az ultraibolya sugárzás között. Az emberek többsége ebből a szűk tartományból is csak a 420 nm és 720 nm közötti fényhullámokat érzékeli, ráadásul a spektrum érzékelése sem egyenletes. A legnagyobb hullámhosszúságúak a vörös színek, majd a hullámhossz csökkenésével a narancs, a sárga, a zöld, a kékeszöld, a kék színen keresztül az ibolya képviseli a legalacsonyabb hullámhosszúságot a látható tartományban. A szem a zöld színnek megfelelő hullámhosszúságú fényre a legérzékenyebb.
Szín | Hullámhossz | Frekvencia | |
Ibolya | 380-420 nm | 789-714 THz | |
Kék | 420-490 nm | 714-612 THz | |
Zöld | 490-575 nm | 612-522 THz | |
Sárga | 575-585 nm | 522-513 THz | |
Narancs | 585-650 nm | 513-462 THz | |
Vörös | 650-750 nm | 462-400 THz |
A szem felépítése és működése
Az emberi szem belső optikai felépítése nagyon hasonlít a digitális fényképezőgéphez, illetve a videokamerához. Helyesebben szólva: ezek az eszközök lemásolják a szem felépítését. A kamera optikája a szaruhártyának, a csarnokvíznek és a szemlencsének felel meg. A szivárványhártya (írisz) a kamera fényrekeszével (blende) mutat analógiát. A szembogár (pupilla) megfeleltethető a blendenyílásnak. Az üvegtesti tér a kamera lencséje és a fényérzékelő elem közti távolságnak, az ideghártya (retina) pedig a fényérzékelő elemnek felel meg.
A szem két részből álló objektívvel rendelkezik. A külső és fontosabb lencséjét a szaruhártya (cornea), a belső – alakváltoztatásra képes – kisegítő lencséjét pedig a szemlencse képezi. A szaruhártya a külvilág felé zárja le a szemet. Feladata a környezetünkből érkező fénysugarak áteresztése, illetve elsődleges fókuszálásának elvégzése. A szaruhártya nem veri vissza a fényt, hanem közel százszázalékosan átengedi azt. A szivárványhártya színe határozza meg a szem színét. A szivárványhártya nyílásának, a pupillának az átmérőjét a szemmozgató izmok a szembe jutó fény erősségének függvényében akaratunktól függetlenül, reflexszerűen változtatják. Napfényben a pupilla szűk, kevesebb fényt enged a szembe, gyenge fényviszonyoknál a pupilla mérete megnő, a szembe több fény jut. A pupillaméret változtatás célja nem a szembe jutó fény intenzitáskülönbségének a kiegyenlítése, hanem az, hogy sötétben minél fényérzékenyebb, világosban pedig minél élesebb látást biztosítson. A pupilla átmérője normál állapotban 4 mm, de a fénymennyiség intenzitásának függvényében az átmérője 2 mm és 8 mm között, a felülete pedig 1:16 arányban változhat. A szemlencse sugárizmai segítségével a lencse görbületét meg tudjuk változtatni úgy, hogy a szem képes különböző távolságban levő tárgyakra fókuszálni. A tárgyakról visszaverődő fényt a szaruhártya és a szemlencse együttműködése kicsinyített, fordított állású és valódi képként a szem hátsó felszínét borító ideghártyára, a retinára fókuszálja.
Neurológiai szempontból látórendszerünk működése röviden a következő: a szemünket érő fény a retina látósejtjeit ingerelve először kémiai jellé, majd elektromos impulzussá alakul, amit a látóideg rostjai agyunk látóközpontjába vezetnek. A két szemünkkel látott kép egymástól kismértékben eltér, de ezt agyunk térbeli képpé alakítja át.
Nézzük meg ezt a folyamatot kicsit részletesebben is!
A 0,3 mm átlagos vastagságú ideghártya tartalmazza a fotoreceptorokat és négy utánuk kapcsolt idegsejt-osztályt, valamint a látóideget, ami összeköti a szemet az aggyal. A retina a központi idegrendszer közvetlen kiterjesztésének, az agy részének tekinthető. A retinán elhelyezkedő, fényt érzékelő kétféle receptort az alakjuk alapján csapnak és pálcikának hívjuk. A mintegy 110-130 millió pálcika biztosítja a szürkületi és esti fényben történő, valamint az oldalirányú, perifériális látást. Kb. 2 µm átmérőjűek, 60-80 µm hosszúak és hengeres formájúak. A nappali fényben működő mintegy 5-7 millió csap rövidebb és csonka kúp alakú, legnagyobb átmérőjük kb. 5-6 µm. A pálcikák nem látnak színeket, de rendkívül érzékenyek, adott esetben akár 1-2 foton érzékelésére is képesek. A fényingerekre adott válaszidejük sokkal kisebb, mint a csapoké. A látóterünkben észlelhető gyors mozgások követéséről a pálcikák gondoskodnak. A csapok biztosítják számunkra a színes látást. Ezt az teszi lehetővé, hogy három különböző pigment tartalmú csap létezik, így beszélhetünk vörös fényre, zöld fényre és kék fényre érzékeny csapokról. A színérzékelés fotokémiai úton jön létre. A csapok érzékenysége mintegy ezerszer kisebb, mint a pálcikáké.
A látósejtek közel sem egyenletes eloszlásúak. A szem optikai tengelyének vonalába, a látósugárba esik a 2-3 mm átmérőjű sárga folt (macula lutea), ahol a látósejtek koncentrálódnak, ettől távolodva sűrűségük fokozatosan csökken. A sárga folton belül található egy gombostűfejnyi, 0,5-1 mm átmérőjű bemélyedés, ahol a retina vastagsága mindössze 0,1 mm és ahol a látósejtek sűrűsége a legnagyobb.
Ez a látógödör (fovea centralis, vagy foveola), mintegy 100000 csapsejttel rendelkezik és gyakorlatilag pálcikamentes. Ha a fovea centralis metszetét erős mikroszkóp alatt nézzük, akkor a csapok méhsejtszerű elrendezésben, szorosan egymáshoz tapadva láthatók, ráadásul itt a csapok a retina egyéb helyein található csapokhoz képest is jóval vékonyabbak és sűrűbben helyezkednek el. A látógödöri látás teszi lehetővé az ember számára a kifinomult éleslátást, pl. a cérna befűzését a tűbe vagy a szálka kiszedését a tenyérből. Összehasonlításul a telihold képe a retinán kb. 0,2 mm átmérőjű pontként képeződik le. A sárga foltban már pálcikák is vannak. A sárgafolti látás látószöge 3 fok a függőleges és 12-15 fok a vízszintes síkban. Ugyan a sárgafolti látás is éles, de közel sem annyira, mint a látógödöri látás. A sárgafolt biztosítja számunkra az olvasást. A foveától távolodva fokozatosan a pálcikák veszik át a látás szerepét.
A 2-3 mm átmérőjű látóideg mintegy egymillió idegszálat tartalmaz. Ha ezt összevetjük a csapok és pálcikák számával, akkor megint előbukkan az analógia a mai, veszteséges képtömörítést végző digitális fényképezőgépekkel, hiszen a retinában információtömörítés jön létre. A receptorok által rögzített kép tömörítése azonban nem egyenletes. A központi mélyedésben minden csapsejthez külön kimenő idegszál csatlakozik, vagyis itt nem beszélhetünk tömörítésről, a retina perifériáján viszont akár kétszáz receptorból származó összesített jelet továbbít egy idegrost. Itt tehát már igen jelentős a tömörítés. Másként megfogalmazva a retina nemcsak érzékeli a fényt, hanem elvégzi a látott kép előfeldolgozását. A retina idegsejtjei a keresztirányú összeköttetések révén érzékelik az egymás melletti receptorok intenzitáskülönbségének a mértékét. Az egybefüggő, egyszínű területek képének közel azonos intenzitású jeleit csak összegzett, tömörített formában továbbítja a retina az agy felé. A tárgyak széleinek élei, határoló vonalai, valamint a látótérben megjelenő mozgás már nagy intenzitáskülönbséget jelent, és ekkor a retinától is részletes információkat kap az agy. Ha a foveolától kifelé távolodunk a retinán, a színérzékeny csapok számának csökkenésével arányosan csökken a szem színlátó és részletlátó képessége is, ugyanakkor fokozatosan nő a mozgásérzékelés. A perifériális látószög mindkét oldalra 90 fok.
Szinte hihetetlen, de csupán 1 fokos szögben látunk élesen. Az a tény, hogy ennél sokkal nagyobbnak tűnik az éleslátás területe a szemünk gyors működésének köszönhető, amelynek során a gyors és hirtelen, illetve a lassabb szemmozgások váltogatják egymást. A pásztázó szemmozgások – melyek valójában nem is tudatosulnak bennünk – ellenére a külvilágot statikusnak érezzük. Erről az agyunk gondoskodik. Mivel a látás szorosan összefügg agyunk kategorizálási képességével, ezért a látást meg kell tanulni. Fiziológiai szempontból a szemünk már születéskor képes lenne a felnőttkori látás szintjén működni, ennek ellenére egy újszülött teljesen más képet lát a külvilágról, mint egy felnőtt. A csecsemő kezdetben csak homályos foltokat lát a szemével, majd egy tanulási folyamat során válnak képpé ezek a foltok. Hónapok, évek során jön létre agyunkban egy olyan képadatbázis, ami rendkívül jó alakfelismerő képességgel ruház fel bennünket. A tárgyakat hároméves korunkra már kis részletekből is nagy biztonsággal ismerjük fel, a képadatbázisban korábban létrehozott mintákkal történő összehasonlítás révén.
A szem felbontóképessége
Az emberi szem felbontóképessége egészséges emberek és normál fényviszonyok esetén – az éleslátást biztosító látógödöri látásra vonatkozóan – 1 ívperc (1’, ami az 1 fok hatvanad része) körüli érték. Az átlagosnál sokkal jobb látású embereknél, valamint igen jó fényviszonyok között ez az érték elérheti a 0,5 ívprcet is. Szemünk két egymáshoz közeli fekete pontot vagy vonalat akkor képes egymástól elkülönülten látni, ha köztük 1 ívpercnyi távolság van. Az ívpercben meghatározott felbontóképesség előnye, hogy független a nézés távolságától. A szem felbontóképessége a tisztánlátás távolságában, vagyis kb. 25 cm-nél körülbelül 0,08 mm. 1 méter távolságból már csak két 0,3 mm-re levő pontot tud egymástól a szemünk megkülönböztetni. 10 méterről ez az érték 3 mm. A szem színfelbontása sokkal rosszabb, mint fekete-fehér felbontása. A színes képpontokra vonatkozóan a felbontóképesség mindössze 8-10 ívperc
A retina szélén a látásélesség jelentősen romlik, az 1 szögperc helyett elérheti az 1 szögfokot.
Látszik-e a Kínai Nagy Fal a Holdról, avagy a pekingi kacsa esete.
Még manapság is tartja magát az a nézet, hogy a Kínai Nagy Fal az egyetlen olyan ember alkotta építmény, mely a Holdról még szabad szemmel is látszik. Ennek eredete egy 1930-as évekbeli amerikai képregényhez vezethető vissza, és igazságtartalma teljes mértékben nélkülöz mindennemű tudományos megalapozottságot.
Nézzünk néhány adatot a Nagy Fallal kapcsolatban: az i. e. 3. század és i. sz. 17. század eleje között épült abból a célból, hogy megvédje Kínát az északi nomád törzsek esetleges támadásaitól. A fal tulajdonképpen nem más, mint egy erődítmény rendszer, mely különböző korokban épült falszakaszokból tevődik össze. Pontos hosszát nem sikerült megállapítani a mai napig: egyes adatok szerint 6352 km, más meghatározások 3000-10000 km hosszúságura becsülik a méretét. Átlagos magassága 10 méter, szélessége pedig nagyjából 8-10 méteresre tehető.
Gondolkodjunk kicsit: ha a Holdról lehetne látni a Nagy Falat, akkor a Földről is észlelnünk kellene egy 8-10 méter széles alakzatot. Hamar rájöhetünk, hogy ez teljes képtelenség. De ha ez nem elég meggyőző, akkor álljon itt néhány tudományosabban megalapozott gondolat magáról a látásról!
Az emberi szem felbontóképessége 1 ívperc. Ez a Föld-Hold 384000 kilométeres átlagos távolságából nézve kb. 116 km-nek felel meg. 10 méteres fal szélesség esetén ebből adódóan 11600-szor szélesebb, azaz egy 116 km széles falra lenne szükség ennél a felbontásnál, hogy szabad szemmel észrevehessük. Ahhoz, hogy észlelni tudjunk egy 10 méter széles falat, egy 100 méter átmérőjű óriástávcsőre lenne szükség. Ilyen méretű távcső nincsen és nem valószínű, hogy a következő évtizedekben épülni fog. Szabad szemmel a Holdon látunk ugyan különböző foltokat, de nem látunk egyetlen krátert sem. Ennek az az egyszerű oka, hogy a Holdon nincs egyetlen 116 km átmérőjű kráter sem.
Kicsit más a helyzet akkor, ha úgy tesszük fel a kérdést, hogy látszik-e a Kínai Nagy Fal az űrből. A föld körül keringő űrhajók 160-350 km-es magasságából, kedvező légköri viszonyok mellett már látszik a Kínai Nagy Fal, mint ahogy a piramisok, a hollandiai gátak, vagy jó néhány város repülőtere és sugárútja. Igaz ugyan, hogy az első kínai űrhajós, Jang Li-Vej nem látta a Falat, de például Eugene Cernan asztronauta, aki háromszor járt az űrben (és egyszer a Holdon is) észlelte a Nagy Falat az űrből.
(A cikk Mizser Attila a http://hirek.csillagaszat.hu oldalon megjelent írásának felhasználásával készült.)
A szem érzékenysége
A szem fényérzékenysége hihetetlenül széles fénysűrűség tartományt ölel át. Az áthidalt tartomány intenzitáskülönbsége tíz nagyságrendű. Mindenki tudja, hogy erős napsütésben jól látunk, de az már kevésbé ismert, hogy bizonyos körülmények között akár 1-10 foton érzékelésére is képesek vagyunk. Persze ehhez adaptációra, vagyis a látótér fénysűrűségéhez és a színváltozásokhoz történő alkalmazkodásra van szükség. Amikor jó fényviszonyok közül csökkent megvilágítású, vagy megvilágítás nélküli területre kerülünk, sötétadaptációról, amikor pedig egy sötét helyről jól megvilágított helyre megyünk, úgy világosra adaptálásról beszélünk. A teljes sötétadaptáció 30-60 percet is igénybe vehet, a világosra történő adaptálás viszont csak néhány másodperc. Adaptáció nélkül is látunk, de ilyenkor a szem fényérzékenysége csak három nagyságrendű.
Érdekességként megemlítjük, hogy a szemlencse rostos szerkezete miatt látjuk az égitesteket csillag formájúaknak. Ha fényképet készítünk az éjszakai égboltról, akkor látható, hogy az égitestek világító pontok.
Minden jog fenntartva. Copyright © Oktel Kft. 1998-2018